Online Stochastic Reservation Systems

Pascal Van Hentenryck, Russell Bent, Luc Mercier, and Yaknargados
Department of Computer Science, Brown University,
Providence, R1 02912, USA

September 13, 2006

Abstract

This paper considers online stochastic reservation pnahl@vhere requests come online and must
be dynamically allocated to limited resources in order taiméze profit. Multi-knapsack problems with
or without overbooking are examples of such online stoahasservations. The paper studies how to
adapt the online stochastic framework and the consensuggret algorithms proposed earlier to online
stochastic reservation systems. On the theoretical sigegsents a constant sub-optimality approxima-
tion of multi-knapsack problems, leading to a regret alkionithat evaluates each scenario with a single
mathematical programming optimization followed by a snmalmber of dynamic programs for one-
dimensional knapsacks. It also proposes several integgragamming models for handling cancellations
and proves their equivalence. On the experimental sidgydaper demonstrates the effectiveness of the
regret algorithm on multi-knapsack problems (with and withoverbooking) based on the benchmarks
proposed earlier.

1 Introduction

In an increasingly interconnected and integrated worltineroptimization problems are quickly becoming
pervasive and raise new challenges for optimization soéwsloreover, in most applications, historical data
or statistical models are available, or can be learned,aiompiing. This creates significant opportunities at
the intersection of online algorithms, combinatorial atmtkastic optimization, and machine learning and
increasing attention has been devoted to these issues iiegy\a communities (e.g., [10, 1, 6, 11, 9, 5, 8]).

This paper considers online stochastic reservation syséem, in particular, the online stochastic multi-
knapsack problems introduced in [1]. Typical applicatiamslude, for instance, reservation systems for
holiday centers and advertisement placements in web brew$aese problems differ from the stochastic
routing and scheduling considered in, say, [10, 6, 9, 5] &t tnline decisions are not about selecting the
best request to serve but rather about how best to serve estequ

The paper shows how to adapt our online stochastic framevemrit the consensus and regret algo-
rithms, to online stochastic reservation systems. Monedweorder to instantiate the regret algorithm,
the paper presents a constant-factor suboptimality appedion for multi-knapsack problems using one-
dimensional knapsack problems. As a result, on multi-kaelpgproblems with or without overbooking,
each online decision involves solving a mathematical @wgand a series of dynamic programs. The algo-
rithms were evaluated on the multi-knapsack problems @®gdn [1] with and without overbooking. The
results indicate that the regret algorithm is particulaffective, providing significant benefits over heuris-
tic, consensus, and expectation approaches. It also d@miaa earlier algorithm proposed in [1] (which
applies the best-fit heuristic within the expectation atpan) as soon as the time constraints allows for 10
optimizations for each online decision or between each mlime decisions. The results are particularly in-
teresting in our opinion, because the consensus and régoetlams have now been applied generically and

successfully to online problems in scheduling, routingl egservation using, at their core, either constraint
programming, mathematical programming, or dedicatedmmstyial algorithms.

The rest of the paper is organized as follows. Section 2duoires online stochastic reservation prob-
lems in their simplest form and section 3 shows how to adaptaline stochastic algorithms for them.
Section 4 discusses several ways of dealing with canagistand section 5 presents the sub-optimality
approximation. Section 6 describes the experimental tsesul

2 Online Stochastic Reservation Problems

2.1 The Offline Problem

The offline problem is defined in termshins B and each bith € B has a capacity,. It receives as input
a setR of requests. Each request is typically characterized lpapgcity and its reward, which may or may
not depend on which bin the request are allocated to. Theigtaliind an assignment of a subgetC R

of requests to the bins satisfying the problem-specific ttaims and maximizing the objective function.

The Multi-Knapsack Problem The multi-knapsack problem is an example of a reservatiaiblpm.
Here each requestis characterized by a rewatd. and a capacity,.. The goal is to allocate a subsEtof

the requestsk to the binsB so that the capacities of the bins are not exceeded and thetiwbj function
w(T) = > .crw, is maximized. A mathematical programming formulation of hroblem associates
witch each request and binb a binary variabler[r, b] whose value is 1 when the request is allocated to bin
b and 0 otherwise. The integer program can be expressed as:

max EreR,beBw"‘rg
such that
> ben a) <1 (reR)
>rercr 2. < Cy (b€ B)
b €{0,1} (reR,bc B)

The Multi-Knapsack Problem with Overbooking In practice, many reservation systems allow for over-
booking. The multi-knapsack problem with overbookingabahe bin capacities to be exceeded but over-
booking is penalized in the objective function. To adaptrtteghematical-programming formulation above,
it suffices to introduce a nonnegative variapkerepresenting the excess for each biand to introduce a
penalty term x 3° in the objective function. The integer programming model i@comes

ax Y reRbeB Wt LeepY
suchthat >, ;22 <1 (reR)
Svercr 2l <Cy+y* (b€ B)
2t €{0,1} (r€R,bc B)
y* >0 (be B)

This is the offline problem considered in [1].

Compact Formulations When requests come from specific types (defined by their dsaard capacities,
more compact formulations are desirable. Requests of the $ge are equivalent and the same variables
should be used for all of them. This avoids introducing syrmiee in the model, which may significantly
slow the solvers down. Assuming that there [dke types and there arB;, requests of typé (k € K), the
multi-knapsack problem then becomes

mHax Zke.r(,beBw'f””z
such that
Zbesz < By (k € K)

Zkech 952 <C, (beB)
2t >0 (ke K,be B),

where variablecz represents the number of requests of ty@ssigned to bim. A similar formulation may
be used for the overbooking case as well.

Generic Formalization To formalize the online algorithms precisely and genelyedt is convenient to
assume the existence of a dummy Binwith infinite capacity to assign the non-selected requeststa
useB, to denoteB U {_L}. A solutiono can then be seen as a functifn— B, . The objective function
can be specified by a functioV over assignments and the problem-specific constraints eapécified
as a relation over assignments giving us the probieax,,. ¢(,) W (o). We usec[r « b] to denote the
assignment whereis assigned to bin, i.e.,

olr—20bl(r) =b
olr < b(r') =o() ifr £

ando | R to denote the assignment where the requests ane now unassigned, i.e.,

(c |l R)(r) =1 ifreR
(c | R)(r) =o(r) ifr¢R.

Finally, we user | to denote the assignment satisfyiige R : o(r) = L.

2.2 The Online Problem

In the online problem, the requests are not known a prioriabetrevealed online during the execution of
the algorithm. For simplicity, we consider a time horiz&ih= [1, k] and we assume that a single request
arrives at each time € H. (It is easy to relax these assumptions). The algorithm técsives a sequence
of requestt = (&1,...,&,) over the course of the execution. At timethe sequencé; = (£1,...,&;)
has been revealed, the requests . . , &_1 have been allocated in the assignment; and the algorithm
must decide how to serve requé&st More precisely, step produces an assignmest = o;_1[&; < b
that assigns a bihito &; keeping all other assignments fixed. The requests are adsionbe drawn from a
distributionZ and the goal is to maximize the expected value

]E[W(UJ_[& —by,..., & by))

where the sequen&e= ({1, ..., &) is drawn fromZ.

The online algorithms have at their disposal a procedurelti@s or approximate, the offline problem,
and the distributior¥. The distribution is a black-box available for samplin@ractical applications often
include severe time constraints on the decision time aratidhe time between decisions. To model this
requirement, the algorithms may only use the optimizatiamt@dure® times at each time step.

It is interesting to contrast this online problem with thadedied in [7, 5, 3]. In these applications,
the key issue was to select which request to serve at eachMt@pover, in the stochastic vehicle routing
applications, accepted requests did not have to be ass@welicle: the only constraint on the algorithm

10ur algorithms only require sampling and do not exploit oifrperties of the distribution which makes them applieabl
many applications. Additional information on the disttilorn could also be beneficial but is not considered here.

3

ONLINEOPTIMIZATION (&)

1 o9« oy;

2 forte Hdo

3 b+« CHOOSEALLOCATION (0y_1,&);
4 oy 041§ « bl;

5 return op;

Figure 1: The Generic Online Algorithm

was the promise to serve every accepted request. The otdrtestic reservation problem is different. The
key issue is not which request to serve but rather whethehandthe incoming request must be served.
Indeed, whenever a request is accepted, it must be assigpgti#ic bin and the algorithm is not allowed

to reshuffle the assignments subsequently.

The Generic Online Algorithm The algorithms in this paper share the same online optinizachema
depicted in Figure 1. They differ only in the way they implemhéunction CHOOSEALLOCATION. The
online optimization schema receives a sequence of onlipeests¢ and starts with an empty allocation
(line 1). At each decision timg the online algorithm considers the current allocatign, and the current
request; and chooses the binto allocate the request (line 3), which is then included artbw assignment
o; (line 4). The algorithm returns the last assignmeptwhose value i3V (0;,) (line 5). To implement
function CHOOSEALLOCATION, the algorithms have at their disposal two black-boxes:

1. afunctionoPTSOL (o, R) that, given an assignmeatand aR of requests, returns an optimal alloca-
tion of the requests i given the past decisions in In other wordspPTSOL (o, R) solves an offline
problem where the decision variables for the requestshave fixed values.

2. afunctionGETSAMPLE(t) that returns a set of requests over the inteftdl] by sampling the arrival
distribution.

To illustrate the framework, we specify a best-fit onlinecaithm as proposed in [1].

Best Fit (G): This algorithm assigns the requésto a bin that can accommodafeand has the smallest
capacity given the assignmemnt

CHOOSEALLOCATION-G(a,)
1 return argmin(b € B : C(c[§ « b])) Cy(o);

whereCy (o) denotes the remaining capacity of the bia B, in o, i.e.,

Cy(o) =Cp — Z Cp.

reR:o(r)=b

3 Online Stochastic Algorithms

This section reviews the various online stochastic algorit. It starts with the expectation algorithm and
shows how it can be adapted to incorporate time constraints.

Expectation (E): Informally speaking, algorithm E generates future requibgtsampling and evaluates
each possible allocation against the samples. A simplecimg@htation can be specified as follows:

CHOOSEALLOCATION-E(0y—1, &)

1 forbe B, do

2 f(b) <0

3 fori—1...0/|B.|do

4 Ryy1 < GETSAMPLE(t + 1);

5 for b € B, : C(Ut—l[ét — b]) do

6 0% « OPTSOL(0¢—1[& < b], Re+1);
7)« F(b) + W(o%);

8

return argmax(b € B) f(b);

Lines 1-2 initialize the evaluatiofi(b) of each requesk. The algorithm then generatéd/| B, | samples

of future requests (lines 3—4). For each such sample, itesgoely considers each available bithat
can accommodate the requéggiven the assignment;_; (line 5). For each such bib it schedules; in

bin b and applies the optimization algorithm using the samplegiestsR; ., (line 6). The evaluation of
bin b is incremented in line 7 with the weight of the optimal assigmto*. Once all the bin allocations
are evaluated over all samples, the algorithm returns theé kith the highest evaluation. Algorithm E
performsQO optimizations but uses onl? /| B, | samples. Whei® is small (due to the time constraints),
each request is only evaluated with respect to a small nufbgmples and algorithm E does not yield
much information. To cope with tight time constraints, tvyppeoximations of E, consensus and regret, were

proposed.

Consensus (C): The consensus algorithm C was introduced in [7] as an alisinaof the sampling
method used in online vehicle routing [6]. Its key idea is ¢dve each sample once and thus to exam-
ine O samples instead @D /| B, |. More precisely, instead of evaluating each possible biimat ¢ with
respect to each sample, algorithm C executes the optimizatgorithm once per sample. The bin to which
request is allocated in optimal solution™ is creditedV(c*) and all other bins receive no credit. Algo-
rithm C can be specified as follows:

CHOOSEALLOCATION-C(0y_1,&)

1 forbe B, do

2 f(b) < 0;

3 fori—1...0do

4 Ry — {&} U GETSAMPLE(t + 1);
5 o« OPTSOL(0¢—1, Ry);

6 flo"(&)) — f(e" (&) + W(o™);
y

return argmax(b € By) f(b);

The core of the algorithm are once again lines 4—6. Line 4 defihe sef?, of requests that now includes
& in addition to the sampled requests. Line 5 calls the opttion algorithm witho; 1 and R;. Line

6 increments only the bin* (&) The main appeal of Algorithm C is its ability to avoid paditing the
available samples between the requests, which is a sigmifecibvantage whe@® is small and/or when the
number of bins is large. Its main limitation is iitism Only the best allocatation is given some credit for
a given sample, while other bins are simply ignored.

Regret (R): The regret algorithm R is the recognition that, in many aggtions, it is possible to estimate
the loss of sub-optimal allocations (called regrets) dyick other words, once the optimal solutieti of
a scenario is computed, algorithm E can be approximatedamighoptimization [5, 2].

Definition 1 (Regret) Let o be an assignmeng be a set of requests,be a request ik, andb be a bin.
The regret of a bin allocation — b wrt 0 and R, denoted byREGRET o, R, < b), is defined as

| W(oPTSOL(0, R)) — W(OPTSOL(c[r < b, R\ {r}))) | .

Definition 2 (Sub-Optimality Approximation)Let o be an assignmeni be a set of requests be a request
in R, andb be a bin. Assume that algorith@mPTSOL (o, R) runs in timeO(f,(R)). A sub-optimatily

approximation runs in tim&(f,(R)) and, given the solutiom™ = optSol(c, R), returns, for each bin
b € B, an approximatiorsuBOPT(c*, o, R, r < b) to all regretsREGRET o, R, r < b) such that

W(oPTSOL(a[r «— b, R\ {r}))) < c (W(oPTSOL(c[r <« b], R\ {r}))) — SUBOPT(c*, 0, R, < b))

for some constant > 1.

Intuitively, the | B, | regrets must not take more time than the optimization. Weeady to present the
regret algorithm R:

CHOOSEALLOCATION-R(0y_1,&)
1 forbe B, do

2 f(b) < 0;

3 fori—1...0do

4 Ry — {&} U GETSAMPLE(t + 1);

5 o* < OPTSOL(0y_1, Ry);

6 f(o7(&)) «— f(o"(&)) + W(o™);

7 forbe By \{o(&): Clop—1[& < b])} do

8 f(b) — f(b) + W(c*) — SUBOPT(c*,04_1, Ry, & < b));
9 return argmax(b € By) f(b);

Its basic organization follows algorithm C. However, imst®f assigning some credit only to the bin selected
by the optimal solution, algorithm R (lines 7-8) uses the-sptimality approximation to compute, for each
available allocatioi§; < b, an approximation of the best solution that allocdteds b. Hence every available
bin is given an evaluation for every sample at tinfer the cost of a single optimization (asymptotically).
Observe that algorithm R perfornd® optimizations at time.

Precomputation Many reservation systems require immediate responsesjteses, giving only limited
time to the online algorithm for decision making. Howevex,sthe case in vehicle routing, there is time
between decisions to generate scenarios and optimize tfhieisiidea can be accommodated in the frame-
work by separating the optimization phase from the decisiaking phase in the online algorithm. This
is especially attractive for consensus and regret wheite g@nario is solved exactly once. Details on this
separation can be found in [4] in the context of the origimairfework.

4 Cancellations

Most reservation systems allow requests to be cancelled #ifey are accepted. The online stochastic
framework can accommodate cancellations by simple enhagts to the generic online algorithm and the

ONLINEOPTIMIZATION (¢, ¢)

1 o¢g«o0y;

2 forte Hdo

3 o1 — o1 | G

4 b+« CHOOSEALLOCATION (0y_1,&);
5 oy — 041§ « bl;

6 return oy;

Figure 2: The Generic Online Algorithm with Cancellations

CHOOSEALLOCATION-C(0¢—1,&)

1 forbe B, do

2 f(b) <0

3 fori—1...0do

4 (Ryi1,Zir1) < GETSAMPLE(t + 1);

5 o*—0oPTSOL(0¢—1 | Zi11,{&} U Rip1);
6 flo"(&)) — f(o" (&) + W(o");

7 return argmax(b € B) f(b);

Figure 3: The Consensus Algorithm with Cancellations

sampling procedure. It suffices to assume that an (oftenygrapt of cancellations; is revealed at step
in addition to the reques} and that the functioGETSAMPLE return pairs(R, Z) of future requests? and
cancellationsZ. Figure 2 presents a revised version of the generic onligeritthm: its main modification
is in line 3 which removes the cancellatiogsfrom the current assignment_; before allocating a bin to
the new request.

Figure 3 shows the consensus algorithm with cancellatitastrating the enhanced sampling procedure
(line 4) and how cancellations are taken into account whéimgahe optimization. The resulting multi-
knapsack is optimistic in that it releases the capacitieketancellations at time although they may occur
much later. A pessimistic multi-knapsack may be obtainedspiacing line 5 in Figure 3 by

o «— OPTSOL(04—1,{&} U Ryy1);

where the capacities freed by future cancellations areasbored. It is however possible to specify the real
offline problem in presence of cancellations, which is chliee multi-period/multi-knapsack problem in
this paper. The rest of this section studies various intpgagramming formulations of this problem.

4.1 The Multi-Period/Multi-Knapsack Problem

The multi-period/multi-knapsack problem is a generalatbof the multi-knapsack problem in which re-
guests arrive at various times and the capacities of therhmsincrease at specific times. The capacity
constraints must be respected at all times, i.e., a reqaasbrdy be assigned to a bin if the bin can accom-
modate the request upon arrival. The complete input of thblem can be specifies as follows:

e A setB of bins.

e A setK of request types, a request of typéaving a capacity,, and a rewarduy.

e Time points:0 =ty < t1 < -+ < tyr < ty+1 = h. The time points correspond to the start time
(to), the end timet(y; 1), or a capacity increase for a bit).,for m = 1,..., M).

e Time points for binb: 0 = t§ < --- <}, <4, | = h;foreachm € {1,..., M}, there is exactly
oneb and onep such that,,, = t%. In other words, the,,,’s are obtained by merging tfg's.

e Capacity for binb: C§ < --- < C}, , whereC}, is the capacity of bitb on the time intervalt}, ¢} , |)
(0<p < My).

e Form € {0,..., M}, andk € K, there areR,, ;, requests of typé arriving betweert,,, andt,, ;.

4.2 A Natural Model

The natural model is based upon the observation that thedpacities do not change before the next
capacity increase. Hence, it is sufficient to post the cépacinstraints for a bin just before its capacity
increases. The model thus features a decision varigfle for each binb, time intervalm, and request
type k: the variable represents the number of request§ of kyassigned to bid during the time interval
(tm,tm+1). There are thugM + 1)| B|| K| variables. There ar&/ + | B| capacity constraints: one for each
timet,, (m € {1,...,M}) and|B]| for the deadline (constraints of type 2). There are al§pavailability
constraints for each time interval in order to bound the nemdb requests of each type that can be selected
during the interval. The modél'P;) can thus be stated as:

Maximize » ~ wy, 25, (1)
b,m,k
Subject to:
(IP;) Vbe B,pe{0,...,M;}: Z Z Cr x%7k§05 2
keK m’tmgtg
Vme{0,..., M} ke K: fon,kSRm,k (3)
L beB

Model (/P;) contains many variables and may exhibit many symmetriethelcontext of online reservation
systems, experimental results indicated that this meltigal/multi-knapsack model cannot be used to obtain
a fair comparison with the offline one-period model as it sa&esignificant time to reach the same accuracy.

4.3 AnImproved Model

The key idea underlying the improve modéP-) is to reduce the number of variables by considering only
the time intervals relevant to each bin. More precisely, el¢fP,) uses a decision variabj,é,,g in (IP2) to

represent the number of requests of typassigned to bim on interval[t®, t°.). In other words, variable

P tp+1
y}), corresponds to the sum of the variablés,, =%, ,,...,20_, , wheret, andt,. are the unique time
points satisfying, =t} andt. = t%, ,, that is
b b b b
prf:ws’k‘i_ws_,’_l’k—i_...+...7x8_17k. (4)

Figure 5(a) depicts the relationship between these vasaliually. There arg<| (3", 5 (M, + 1)) vari-
ables in(IP;) or, equivalently, K || B| 4+ |K|M variables sincé/ =)", M,

The capacity constraints (6) are mostly similar but only teeintervals pertinent to the request type.
The availability constraints (7) are however harder to egprand more numerous. The idea is to consider

FROMY TOX(C, R, y)
1 z+0;
2 WhiIeEIbp|yp7$0dO

3 (b,p) <« argmin {tp+1 |y§’, #* 0} ;

4 s « the unique index such thgf = tg;
5 e — the unique index such thag = t* . ;
6 1+ 8
7 while 3% # 0 do
8 if t; > t, then
9 return FAILURE;

10 § — min(yb, R;);

11 yb —yb — 6;

12 R, — R, — 0;

13 xf — 0;

14 1 — 1+ 1;

15 return z;

Figure 4: The Transformation from Mod@lP;) to Model (1P;).

all pairs of time pointst,,, , tm,) such thatn; < ms and to make sure that the vanabj,%s,c that can only
consume requests of tygein the intervals[t,,, , t,,,) do not request more requests than available. There
are thusO(M?| K |) availability constraints i{/P,) instead ofO(M|K]|) in (IP;).

The model can thus be stated as follows:

Maximize ~ wyy? ;. (5)
b,p,k
Subject to:
VbeBpe{0,....M}: > > ayhp<Ch (6)
(IPQ) keK m|t’,’n§t§;
mo—1
VO<mi<ms<M+1,keK: Y by < D> Rug (0)
bEB,p m=mi
by <t
L th 4 <tm,

4.4 Equivalence of the Models

Any solution to(IP;) can be transformed into a solution(ttP): it suffices to use equation (4) to compute
the values of they variables. This section shows how to transform a solutiofi/f®,) into a solution
to (IP;). First, observe that the transformation can consider eaghest type independently and derive

the values of of variables? ;% | ,,...,...,2%_ , from the value of the variablg’ ,. As a result, for
simplicity, the rest of section omits the subscriptorresponding to the request type.
It remains to show how to derive the valuesadf x5, ,,...,...,z%_, from the value ofy,. This

transformation is depicted in algorithmrRBMY TOX. The algorithm considers the variablg§ % 0 by
increasing order oa‘;H, that is the endpoints of their time intervals. It greedigigns the available requests
to the variables:?, 2° 1 2%, that correspond t@p Each iteration of lines 8-14 considers variables

ey 6

apllat|ab«3]l=2] o ffofofofolf2zlofofolo]f2zfofft]olfol{2foft]ofol{2]olft|o]!

a2l 323 23| oflojfolfoffo|lolfolfoffofofloffoffoffoffolf[offofftfftfollofoff1f1]o

Ly
wll wi J s {2 1 [v ffofl + J s ffoff o Jl v Jfof o | s fof o J[0
we I wt Jwl[o I 2 Jof[o 2 Jo][o [2 JoJ[o Lo Jo][o [o Jo
0 0

RyRy Re Rs R, 3 0 2 1 2 1 0 2 1 2 1 01 1 2 1 0 2 1 00 01
(a) Variables (b) Input (c) First pass (d) Second pass (e) Third pass (f) Last pass, output

Figure 5: A Run of Algorithm RomY TOX with a Feasible Input.

2 o L o Jfoll o L Jfoffo o Jfof o J[1
0 JL2 JoJ[o L2 JoJ[o [2 JoJ[o JLrAo]

301 12 1 01 12 1 001 2 1 0O0 0 2

PR < -
< e > - >

(a) Input (b) First pass (c) Second pass (d) Return “No Solution”

Figure 6: A Run of Algorithm RomY TOX on an Infeasible Input.

x?, selects as many requests as possible figribut not more than’), decreases; andy?, and assigns
:nf The algorithm fails if, at time,, the valueyg has not been driven down to zero, meaning that there are
too few requests to distributg, amongz?, 2%, ,,...,... ab_,.

Observe that, if [P,) satisfies (6) and the transformation succeeds, then tignassnts to the: vari-
ables satisfies the capacity constraints (2) because oflin& remains to show that a failure cannot occur
when the constraints (7) are satisfied, meaning that lin@saBe- redundant and that the algorithm always
succeeds in transforming a solution(ttP,) into a solution to(/P;) when the availability constraints (7)
are satisfied.

Figure 5 depicts a successful run of this algorithm. Pardépjcts the variables and part (b) specifies the
inputs, that is the assignment of thevariables. The remaining parts (c)—(f) depict the sucuedgérations
of the algorithm. The variables are selected in the oggley, v7, andy,. The available requesty, . .., Ry
are shown in below. Observe how the algorithm assigns the\afly! to z1, sinceR; = 0.

Figure 6 depicts a failing run of the algorithm. During th&dtteration, the program returns, because
there are too few available requests to decreds® zero. That means that the instance with the updated
values ofR; violates the constraints (7) witth; = 2, mo = 4. In turn, this implies that thg assignment
violates the constraints (7) on the original input with = 1, ms = 4. The figure also depicts how the
proof will construct the violated constraint. The intesraépresented by short-dashed arrows correspond to
they]l; considered during each iteration of the outermost loop. l[dhg-dashed arrows represent an interval
violating the availability constraint after the iteratidcompleted. These two intervals are combined to
obtain an interval (shown by the plain arrows) violating &wailability constraints at the beginning of the
iteration. To obtain this last interval, the proof combities two “dashed” intervals as follows. Whenever
the vectorR has been modified during the iteration at a position includeithe long-dashed interval, the
plain interval is the union of the two dashed one (this is teeon figure 6(c)). Otherwise, the plain interval
is the long-dashed one (this is the case on figure 6(b)).

Lemma 1. If algorithm FRomY TOX fails, there exisD < my < mo < M violating constraint (7).

Proof. By induction on|{(b,p) |y} # 0 }|. The base case is immediate. Assume that the lemma holds for
i non-zero variables. We show that it holds for 1 non-zero variables. Leﬁg be the variable considered
during the first iteration of the outer loop and choesg = s andm/, = e, with s ande defined as in lines 4
and 5 of the algorithm.

10

Suppose the algorithm fails during the first iteration. There are fewer thaplf, available requests in
the intervalt,,, , t,,,) with m; = m) andmy = m/, and the result holds.

Suppose now that the program fails in a subsequent iteratidnet R, 7 the values of the vector®
andy after the first iteration of the outer loop (Iine 3-14). Thatans that the algorithm would have failed
with 7 and R as input. By induction, sincg{ (b, p) |75 # 0 }| = 4, there existn{ andm/ such thatj and R
violate constraint (7). There are two cases to consider.

case 1L.If R, = R,, forall m{ < m < m}, then the same mterv@‘lm,,,t ,,) for which (7) was violated

with 77 and R also violates the constraint with and R. As a consequence, the result holds with
my = mf andmg = mf.

case 2.Suppose there exists* such thatm/ < m* < m} andR,,~ < R,,+. First, because the inner loop
modifies R only in the range{ml,mz), the |ntervals[m1,m2 1] and[mf, m} — 1] intersect and
hence their union is also an interval. Denote this uniorirby, ms — 1] and observe thaty, = m/
by line 3 of algorithm RomY TOX. In addition, because the inner loop decreasgs from left
to right (i.e., by increasing values af), we haveR,, = 0 for all m such thatm| < m < mf
(otherwise the inner Ioop would have stopped befarand the first case would apply). This proves

that> " " Ry, =" R,.. As a consequence,

m m
my—1 mo—1 mo—1
_ bo b bo T

E yh = ypo+§ 7>yl + E yp>yp0+§ Rm—yp0+§ Ry, = E Ry

s s m= m1 m=mj m=mi
tmq <t tm1<t t ,,<tb
b b
tpp1<tmg tpp1<tmg <t !

pH1S

and thus the constraint (7) is violated for the specifiedandms.

The following proposition summarizes the results of thistisa.
Proposition 1. The modelg IP;) and(IPy) have the same optimal objective value.

In practice, this last model is very satisfying. On the benaltks used in the experimental section, model
(IPb) is solved about 2.5 times slower than the correspondinglésiperiod) multi-knapsack (for the same
accuracy).

5 The Suboptimality Approximation

This section describes a sub-optimality algorithm apprating multi-knapsack problems within a constant
factor. Given a set of requesks a request € R, and an optimal solution™* to the multi-knapsack problem,
the sub-optimality algorithm must return approximatiooghe regrets of allocatingto binb € B, . The
sub-optimality algorithm must run within the time taken bganstant number of optimizations.

The key idea behind the suboptimality algorithm is to solgenall number of one-dimensional knapsack
problems (which takes pseudo-polynomial time). There @& rhain cases to study: either requess
allocated to a bin im3 in solutions™* or it is not allocated (that is, it is allocated t0. In the first case, the
algorithm must approximate the optimal solutions in whtdh allocated to other bins (proced\lReGREF
SWAP) or not allocated (proceduREGREFSWAP-OUT). In the second case, the request must be swapped
in all the bins (procedur&EGREFSWAP-IN). The rest of this section presents algorithms for the non-
overbooking case; they generalize to the overbooking case.

11

REGREFSWAP(3, 1, 2)
1 A—bin(l,0*)Ubin(2,0*)UU(c*)\ {i};
2 ifCy—¢; > Cythen

3 bin(1l,0%) «— knapsack(A,C1 — ¢;) U {i};

4 bin(2,0%) «— knapsack(A \ bin(1,0%),Cs);

5 else

6 bin(2,0%) «— knapsack(A, Cs);

7 bin(1l,0%) «— knapsack(A\ bin(2,0%),C1 — ¢;) U {i};
8 e« argmax(r € bin(1,0*) \ bin(1..2,0%) : ¢, > max(Cy — ¢;, C3)) ¢r;
9 if eexists& we > max(w(bin(1,0%)), w(bin(2,0%))) then

10 J < argmaz(j € 3..n) Cj;

11 bin(j,0®) «— knapsack(bin(j, o) U {e}, C});

Figure 7: The Suboptimality Algorithm for the Knapsack Heoh: Swapping from Bin 2 to Bin 1.

Since the names of the bins have no importance, we assumthéyaare numbered..n. Moreover,
without loss of generality, we formalize the algorithms towe request from bin 2 to bin 1, to swap
request out of bin 1, and to swap requesinto bin 1. We user* to represent the optimal solution to the
multi-knapsack problemz® to denote the optimal solution in which requés assigned to bin IREGREF
SWAP andREGREFSWAP-OUT) or is not allocatedEGREFSWAP-IN), andc” to denote the sub-optimality
approximation. We also usen(b, o) to denote the requests allocated to biand generalize the notation
to sets of bins. The solution to the one-dimensional kndppaablem onR for a bin with capacityC is
denoted byknapsack(R,C). We also use:(R) to denote the sum of the capacities of the requests,in
w(R) to denote the sum of the rewards of the requests,iandU (¢*) the requests that are not allocated in
the optimal solutiorr™.

Swapping a Request Between Two Bins Figure 7 depicts the algorithm to swap requdsbm bin 1 to bin

2. The key idea is to consider all requests allocated to bersdl2 inoc* and to solve two one-dimensional
problems for bin 1 (without the capacity taken by requgsind bin 2. The algorithm always starts with the
bin whose remaining capacity is largest. After solving ehego one-dimensional knapsacks, if there exists
arequese € bin(1,0*) not allocated irbin(1..2,0%) and whose value is higher than the values of these
two bins, the algorithm solves a third knapsack problem ge@lthis request in another bin if appropriate.
This is important if request is of high value but cannot be allocated in bin 1 due to the cptaken by
request.

Theorem 3. Algorithm REGRETSWAP is a constant-factor approximation, that isgif be the sub-optimal
solution ands® be the regret solution, there exists a constant 1 such thatw(c®) < c w(o®).

Proof. Let o° be the sub-optimal solutios;* be the regret solution, ang be the optimal solution. Con-
sider the following sets

L = o°no” I; = (bin(2,0°)\ 0% Nbin(1,0%)

I, = (bin(1,0°)\c®)NU(c*) Is = (bin(2,0°)\ c%) Nbin(2,0%)

Is = (bin(2,0°)\c®)NU(c*) Iy = (bin(3..n,0%)\ c®) Nbin(l,0")
Iy = (bin(3.n,0°)\o*)NU(c*) L = (bin(3..n,0%)\ c%) Nbin(2,0%)
Iy = (bin(1,0°)\ %) Nbin(l,6*) ;1 = (bin(l.n,c%)\ c*) Nbin(3..n,c*)
Is = (bin(1,0°)\ 0%) Nbin(2,0%)

12

The suboptimal solutio® can be partitioned inte® = ,161:1 I}, and the proof shows that (/) <
cp w(o®) (1 < k < 11) which implies thatw(c®) < ¢ w(c®) for some constant = ¢; + ...ci1.
The proof of each inequality typically separates two cases:

Al Cp—¢ > Oy
B: C71 —¢; < O,

Observe also that the proof tha(l;) < w(c*) is immediate. We now give the proofs for the remaining
sets. In the proofs}] denotes”; — ¢; and K (E, C) is defined as follows:

K(E,C) = w(knapsack(E,C)).
I,.A : By definition of I and by definition obin(1,c%) in line 3,
K(I,C1) < K(U(c%),C1) < K(bin(1,0%),C1) < w(a®).
I,.B : By definition of I, C] < C9, and by definition obin(2,0%) in line 6
K(I5,C1) < K(U(c"),C1) < K(U(c"),Cy) < K(bin(2,0%),Cs) < w(c®).
I3.A : By definition of I3, C{ > C5, and by definition obin(1,0%) in line 3
K(I3,Cy) < K(U(c*),Cy) < K(U(c*),C) < K(bin(1,0%),C7) < w(c?).
I5.B : By definition of I3 and by definition obin(2,0%) in line 6
K(I3,Cy) < K(U(c"),C2) < K(bin(2,0%),C2) < w(c?).

I, : Assume thatv(1y) > w(c®). This implies

w(ly) > wbin(l,0%)) + w(bin(2,0%)) + w(bin(3..n,0%))
> w(bin(3..n,0%)) > w(bin(3..n,0™))

which contradicts the optimality of* sincely C U(c*).
I5.A : By definition of I5; and line 3 of the algorithm
K(I5,C1) < K(bin(1,0%),07) < K(A,C7) <w(bin(1,0%)) < w(c?).
I5.B : By definition of I5, C] > C, and line 6 of the algorithm

K(I5,CY) K(bin(1,0%),01) < K(bin(1,0%),Cq) < K(A, Cy)

K(bin(2,0%),C3) < w(c?)

IA A

Ig.A : By definition of Iz and line 3 of the algorithm
K(Is,C7) < K(bin(2,0%)\ {i},C1) < K(bin(1,0%),C}) < w(c®)

Is.B : By definition of I and line 6 of the algorithm.
K(Is,C7) < K(bin(2,0%) \ {i},Cq) < K(bin(2,0%),Cs) < w(c®)

13

: by definition ofI7, Cy < C1, and line 3 of the algorithm,

K(I7,C) < K(I7,C1) < K (bin(1,0%),C1) < K(bin(1,0%),C1) < w(c®).

: By definition of I7, Cy > C17, and line 6 of the algorithm

K(I7,C3) < K(bin(1,0%),Cs) < K(bin(2,0%),Cs) < w(c?).

: By definition of Ig, C; < C17, and line 3 of the algorithm

K(Ig,C) < K(I3,C1) < K(bin(2,0%),C1) < K(bin(1,0%),C1) < w(c®)

: by definition of I, Cy > €, and line 6 of the algorithm,

K(Ig,Cy) < K(bin(2,0%),Cs) < K(bin(2,0%),Cs) < w(c®).

: Consider

T = knapsack(bin(l,0%),C");

L = bin(l,0")\T
and lete = argmax,.; w.. By optimality of 7', we know thatc(T) + ¢(e) > C} and, since
bin(1,0*) = T U L, we have that(L \ {e}) < ¢;.
If we < max(w(bin(1,0%)),w(bin(2,0%))), then

w(ly) T) 4+ w(L\{e}) + we
bin(1,0%)) + w(bin(2,0%)) + we

2(w(bin(1,0%)) + w(bin(2,0%))) < 2w(c?).

< w(

< w(

<

Otherwise, by optimality obin(1,c%) andbin(2,0®), we have that
cle) > C1 & c(e) > Cs

and the algorithm executes lines 10-11¢(H) < C}, then

w(ly) w(T) +w(L\ {e}) + we

<
< w(bin(1,0%)) + w(bin(2,0%)) + w(bin(j,c)) < w(c?).
Otherwise, ifc(e) > Cj, e ¢ o° and

w(ly) < w(T)+w(L\{e}) <w(bin(l,c%)) + w(bin(2,0)) < w(c?).

: Consider

T = knapsack(bin(1,0%),Cs);
L = bin(l,0")\T

and lete = argmax, . we. If w(T') > w(L), we have that

w(bin(1l,0")) < 2w(T) < 2w(bin(2,0%)) < 2w(c?).

14

REGREFSWAP-OUT(i, 1)
1 A—bin(l,0*)UU(c*)\ {i};
2 bin(l,0%) <« knapsack(A, C1);

Figure 8: The Suboptimality Algorithm for the Knapsack Heoh: Swapping out of Bin 1.

Otherwise,c(L) > C, by optimality of 7" and thusc(L) > ¢; sinceCy > ¢;. By optimality of T,
(T U{e}) > Cy > C7 and, sincebin(l,0*) = T U L, it follows thatc(L \ {e}) < ¢ Hence
w(L \ {e}) < w(T) by optimality of 7" and

w(lg) < w(T)+w(L\{e})+we < 2w(T) + we < 2w(bin(2,0%)) + we.

If we < w(bin(2,0%)), w(ly) < 3w(bin(2,0%)) < 3w(c®) and the result follows. Otherwise, by
optimality of bin(2, 0%), ¢(e) > Cy > € and the algorithm executes lines 10-11¢(H) < C}, then

w(lyg) < 2w(bin(l,0%)) 4+ w(bin(j,o?)) < w(c?).
Otherwise, ifc(e) > Cj, e ¢ o° and

w(ly) < w(T)+w(L\{e}) <2w(bin(2,0)) < 2w(c?).

Ip.A : By definition of Iy, C} > C5, and line 3 of the algorithm

w(lip) < w(bin(2,0)) —w(i) < w(bin(l,0)) < w(c?).
I,0.B : By definition of Iy and by line 6 of the algorithm

w(lip) < w(bin(2,0")) —w(i) < w(bin(2,0)) < w(c?).
I, : By definition of the algorithmK (bin(3..n,0*)) < K(3..n,0%).

U

Swapping a Request Out of a Bin The algorithm to swap a requesbut of bin 1 is depicted in Figure 8.

It consists of solving a one-dimensional knapsack with dgpiests already in that bin and the unallocated
requests. The proof is similar, but simpler, to the proof bédrem 3.

Theorem 4. Algorithm REGRETSWAP-OUT is a constant-factor approximation.

Swapping a Request Into a Bin Figure 9 depicts the algorithm for swapping a requestbin 1, which

is essentially similaREGREFSWAP but only uses one bin. It assumes that requesin be placed in at
least two bins since otherwise a single additional optititopasuffices to compute all the regrets. Once
again, it solves a one-dimensional knapsack for bin 1 (&twing allocated request with all the requests
in bin(1,0*) and the unallocated requests. If the resulting knapsack lenoquality (i.e., the remain-
ing requests fronbin(1,0*) have a higher value tharin(1,c%)), REGREFSWAP-IN solves an additional
knapsack problem for the largest available bin. The proohise again similar to the proof of Theorem 3.

Theorem 5. Assuming that iteni can be placed in at least two bins, AlgorithREGREFSWAP-IN is a
constant-factor approximation.

15

REGREFSWAP-IN (i, 1)

1 A—bin(l,0*)UU(c%);

2 bin(1l, R) < knapsack(A,Ci — ¢;) U{i};

3 L« bin(l,0%)\ bin(1,0%);

4 if w(L) > w(bin(1,0%)) then

5 J — argmaz(j € 2..n) Cj;

6 bin(j,0®) < knapsack(bin(j, o) U L, C});

Figure 9: The Suboptimality Algorithm for the Knapsack Rerh: Swapping into Bin 1.

6 Experimental Results

6.1 The Instances

The experimental results use the benchmarks proposed.iRgfuests are classified intypes. Each type

is characterized by a weight, a value, two exponentialitligions indicating how frequently requests of that
type arrive and are cancelled, and an overbooking penakyg&verated ten instances based on the master
problem proposed in [1]. The goal was to try to produce a diveset of problems revealing strengths and
weaknesses of the various algorithms. The ten problemsaanech (A-J) here. Problem A scales the master
problem by doubling the weight and value of the request typegke master problem, as well as halving
the number of items that arrive. Problem B further scalebslpra A by increasing the weight and value of
the types. Problem C considers 7 types of items whose casttaékes the form of a bell shape. Problem
D looks at the master problem and doubles the number of biiie wividing their capacity by 2. Problem

E considers a version of the master problem with bins of bégigapacity. Problem F depicts a version
of the master problem whose items arrive three times as aftdircancel three times as often. Problem G
considers a much larger problem with 35 requests types wéta&to is also shaped in a bell. Problem H is
like problem G, the main difference is that the cost ratigpghia reversed. Problem | is a version of G with
an extra bin. Problem J is a version of H with fewer bins.

The mathematical programs are solved with CPLEX 9.0 withme tiimit of 10 seconds. The optimal
solutions can be found within the time limit for all instasdaut | and J. Every instance is executed under
various time constraints, i.eQ = 1,5, 10, 25,50, or 100, and the results are the average of 10 executions.
The default algorithm for cancellations uses the pessienistilti-knapsack, which is slighly superior to the
optimistic multi-knapsack.

It is important to highlight that, on the master problem atsdsariations, the best-fit heuristic performs
quite well. On the offline problems, it is 5% off the optimumtire average and is never worse than 10%
off. This will be discussed again when the regret algoriteradmpared to earlier results.

6.2 Comparison of the Algorithms

Figure 10 describes the average profit (a) and loss (b) ofdheus online algorithms as a percentage of
the optimal offline solution. The loss sums the weights ofréjected requests and the overbooking penalty
(if any); it is often used in comparing online algorithms agives a sense of the “price” of uncertainty.
The results clearly show the value of stochastic infornmags algorithms R, C, E recovers most of the
gap between the online best-fit heuristic (G) and the offlipénaum (which cannot typically be achieved
in an online setting). Moreover, they show that algorithmsriRl C achieve excellent results even with
small number of available optimizations (tight time coastts). In particular, algorithm R achieves about
89% of the offline optimum with only 10 samples and 91% with piraizations. It also achieves a loss
of 28% over the offline optimum for 25 optimizations and 34% X0 optimizations. The regret algorithm

16

Momualized Averages

1.1

1 * &
h —#— Optimal
E gl “‘dd_i —m— Gready
= —a— Expectation
E 0g —p— Conzens =
I —#— Regrat
0.7 7
D.E T T T T T
u] 20 40 G0 a0 100
Mt rmum Mumber of Opti mizations
(a) Average Profit
Normalized Averages - Reservation Loss
+ Penalty
1.95 - x\
E 175 4L, L i —o— Optimal
- —=— (sreedy
o 1.55 7 .
=] \‘\, —— Expectation
5 1397 ~ ¥ t |-# Consensus
-
< 1.15 7 —— Fagret
095 FH—*2 T A
0 A0 100

Maximum Number of
Optimizations

(b) Average Loss

Figure 10: Experimental Results over All Instances with beeking Allowed.

17

Mormalized Average of Variations
1 * L4 +
0.85 4
T
0.8 4
£ 0.5 —4— O ptimal
nE_ —8— Gready
bo0.8 —&— Expeactation
E —#— Consensus
I Ly —®— Regret
0.7 4
0.65 1
0.5 1+ 1 T T T T
i} 20 40 G0 20 100
Mzximum Mumber of Optimizations
(a) Average Profit
Maorm alized Awverage of W ariatiors - Resenation Loss
1.8 4
1.7
1.5 1
E 154 & |——Optimal
.:.E_ —i— Greedy
o1 - —i— Expectatio
s ¥
g —&— Conserns us
13 A —u— Regrat
1.2 1
1.1 1
1T %
u] s 40 =1} = u) 100
Maximum Mumber of Optimizations

(b) Average Loss

Figure 11: Experimental Results over All Instances with (beeking Disallowed.

18

clearly dominates the expectation algorithm E which penopoorly for tight time constraints. It becomes
reasonable for 50 optimizations and reaches the qualitiyeofegret algorithm for 100 optimizations.

Figure 11 shows the same results when no overbooking is ellowhese instances are easier in the
sense that fewer optimizations are necessary for the #igwsito converge. But they exhibit the same
pattern as when overbooking is allowed. These results dte imperesting and shows that the benefits of
the regret algorithm increase with the problem complexitydye significant even on easier instances.

6.3 Comparison with Earlier Results

As mentioned earlier, the best-fit algorithm is only 5% betbe optimal offline solution in these problems.
It is thus tempting to replace the IP solver in algorithm E oy best-fit heuristic to evaluate more samples.
The algorithm, denoted by BFX®, was proposed in [1] and was shown to be superior to sevepabapghes
including yield management and an hybridization with Markéodels [12]. Because the best-fit algorithm
is so fast, BF &P can easily be run with 10,000 samples and remedies the fiaritaof algorithm E under
tight time constraints.

Figure 12 compares algorithms BKE, R, and C when overbooking is allowed. The results show that
BF Exp indeed produces excellent results but is quickly dominated as time increases. In particular,
the loss of BF KP is above 40%, although it goes down to 34% for 10 optimizatiand 28% for 25 opti-
mizations in algorithm R. Similarly, the profit increases4® in the average starting at 25 optimizations.
BF EXxP is also dominated by algorithm C but only for 50 optimizasar more.

What is quite remarkable here is that the 5% difference irityuaetween the best-fit heuristic and the
offline algorithm translates into a similar difference iratjty in the online setting. Moreover, when looking
at specific instances, one can see that Bé® B often comparable to R but its loss (resp. profit) may be
significantly higher (resp. lower) on instances that seertiqudarly difficult. This is the case for instances
E and G, where the gap between the offline solutions and thé@ud by algorithm R is larger. This seems
to indicate that the harder the problems the more benefigialithm R becomes. This in fact confirms our
earlier results on stochastic vehicle routing where theréttyns use a large neighborhood heuristic [3, 13].
Indeed, using a simpler, lower-quality, heuristic on mamenples did not produce high-quality results in
an online setting. The results presented here also showhiiaidditional information produced by a more
sophisticated solver quickly amortizes its computatiameait, making algorithm R particularly effective and
robust for many problems.

6.4 The Impact of the IP Model

Figure 13 reports some experimental results on the impabedP model. It depicts the distributions of the
distibution of ratios online/offline, depicting the maximuthe median, as well as the .75-tile and .25-tile.
The minimum ratio does not appear, as it is always lower tB&n Notches represent a 95% confidence
interval on the median. The data is obtained on 50 instaresscbon the master problem (no overbooking)
and 20 runs per instances, accounting for 1,000 runs. Fif2]ed compares the pessimistic multi-knapsack
approach where the capacities of the cancelled requesisriestoredrfoCan) with the multi-period/multi-
knapsack approach using mo@éP,) to take into account cancellations exactly. These two agures are
compared on 10, 25, and 50 scenarios per decision usingghet edgorithm. The results indicate that the
multi-period/multi-knapsack model definitely improveseothe pessimistic multi-knapsack approach as the
confidence interval around the median do not intersect. @te online/offline moves from 92% to 93%,
which is not negligible given the fact that the algorithme already producing very high-quality decisions.
Figure 13[b] gives similar results for both the expectatmal regret algorithm using 25 scenarios.

19

Hormaliz ed Averaiges

0.5

093 4

0.91 4 —

0.29 4

—#— Consens us
025 1 —a#— Fegret
0.e3 4 —&—BF Exp

Foerage Profit

0.21 4

0.7

077 A

I:l.?ﬁ T T T T T T
u] o 40 (=] 20 100

Mtzxi rurmn Mumber of Opti mizations

(a) Average Profit

N ormalized Averages - Reservation Loss + Penalty

16 ||

1.55 1

1.5 4

1.45 1

—4#— Consensus

1.4 " [—w— Regret
\. —&— BF Exp
1.356 &

1.3 4

Awerage Loss

¥

1.25 4

1 2 T T T T
u] 20 40 G0 a0 100

Maxirmum Mumber of Optimizations

(b) Average Loss

Figure 12: Comparison with Earlier Results: Average Redoit Instances with Overbooking

20

1.0 1.0

.98 -98
.96 .96
ol 1 1 | 1 1] 04| | i i S 5 <]
S— <& < >—< [>—< >—<] B
92 %>_<¢_<_>_¢ | | | . 92] 1 i | | N
90 | | | || | | | |] .90
88F .88
86 I I .86
10 25 50 10 25 50 ExpBF R E R E
Pessimistic offline Multi-Period offline Pessimistic offline Multi-period offline
(a) Varying The Number of Scenarios. (b) Varying The Algorithm for 25 Scenarios.

Figure 13: The Impact of the Integer Programming Model.

6.5 The Quality of the Regret Algorithm

Figure 14 reports experimental results on the quality ofrégget algorithm. It depicts the frequencies of
the differences between the optimal solution and the rexyatiation on all possible bin allocations for all
scenarios, both the pessimistic knapsack and the multigherulti-knapsack approaches. What the results
indicates is that the difference in evaluation is almosiagswery small, demonstrating experimentally the
quality of the regret algorithm. For the pessimistic off]itlee regret algorithm produces the optimal value
80% of the time and is at most 5 off the optimal value about 90%etime. The results are slightly inferior
for the multi-period offline, since the regret algorithm Hass flexibility. Note that negative differences
come from the tolerance used by CPLEX, which is not guardnieénd the exact optimum. Also the gaps
in the histogram are due to reward values: not all the diffees between reward values are possible.

Figure 15 compares the quality of the decisions taken by elgeet algorithms as a function of the
consensus rate, that is the percentage of scenarios whinse@lopin allocation at a timeis the same as the
decision taken by the expectation algorithm at tim&he experimental results are for 10 scenarios: They
indicate that there is perfect agreement between the sosr@% of the time (the rightmost column) and
that, 20% of the time, there is a 90% agreement (the next golumthe right). The quality of the decisions
is measured by the disagreements between algorithms E atiaitHs the difference in quality between
the decisions taken by algorithms E and R over all scenafld® experimental results, depicted by the
blue curve, show that the disagreements are always very @esad than 0.44 for a consensus rate of 50%)
and decrease significantly when the consensus rate insredsis highlights a fundamental property of the
regret algorithm: it is optimal for the optimal decision. iée, when the consensus rate is large, it is optimal
for a large number of scenarios and the disagreement desteas

7 Conclusion

This paper adapted our online stochastic framework andriiigts to the online stochastic reservation
problems initially proposed in [1]. These problems, whoseea@an be modelled as multi-knapsacks, are
significant in practice and are also different from the sciiad and routing applications we studied earlier.
Indeed the main decision is not which request to select ngixtdther how best to serve a request given
limited resources. The paper shows that the framework arasgociated algorithms naturally apply to on-
line reservation systems and it presented a constant-fagtpoptimality approximation of multi-knapsack

21

Il Pessimistic offline
80-0% [JMulti-Period offline

73.7%

I
7.5 %
5.0 %
2.5 %

0 %Ll I ﬂ.n I | ﬂﬂ
<-3 0 5 10 15 20 >22

Figure 14: The Quality of the Regret Algorithm.

problems that only solves one-dimensional knapsack pmudléeading to a regret algorithm that uses both
mathematical programming and dynamic programming algmst It also proposed several approaches to
deal with cancellations and studied IP models to solve thi+meriod/multi-knapsack problem. The algo-
rithms were evaluated on the multi-knapsack problems @m®gdn [1] with and without overbooking. The
results indicate that the regret algorithm is particulaffective, providing significant benefits over heuris-
tic, consensus, and expectation approaches. It also d@miaa earlier algorithm proposed in [1] (which
applies the best-fit heuristic with algorithm E) as soon astitme constraints allows for 10 optimizations
at decision time or between decisions. The experimentaltseshow that the regret algorithm closely ap-
proximates the expectation algorithm at a fraction of thst.cé&&ven more interesting perhaps, the regret
algorithm has now been applied to online stochastic probletmere the offline problem is solved by either
constraint programming, integer programming, or (spguispose) polynomial algorithms, indicating its
versatility and benefits for a wide variety of applications.

References

[1] T. Benoist, E. Bourreau, Y. Caseau, and B. Rottemboueagvards stochastic constraint programming:
A study of online multi-choice knapsack with deadlines.Pimceedings of the Seventh International
Conference on Principles and Practice of Constraint Pragnaing (CP’01) pages 61-76, London,
UK, 2001. Springer-Verlag.

[2] R. Bent, |. Katriel, and P. Van Hentenryck. Sub-Optiral\pproximation. InEleventh International
Conference on Principles and Practice of Constraint Pragraing Stiges, Spain, 2005.

[3] R. Bent and P. Van Hentenryck. A Two-Stage Hybrid Locaai$é for the Vehicle Routing Problem
with Time Windows. Transportation Scien¢e(4):515-530, 2004.

[4] R. Bent and P. Van Hentenryck. Online Stochastic and Ro@Ogptimization. InProceeding of the 9th
Asian Computing Science Conference (ASIAN'Ghiang Mai University, Thailand, December 2004.

22

80 %
44 — Mean R/E disagreement

160 %

140 %

DO
S
X

99l SNSUSU0D dY) Jo Aouanbai g

}36
| N N N i
S o6 7T 8 .9 1 0%
Consensus Rate

Figure 15: The Quality of the Decisions Taken by the Regrgb#ithm.

[5] R.Bentand P. Van Hentenryck. Regrets Only. Online Sastibh Optimization under Time Constraints.
In Proceedings of the 19th National Conference on Artificidélligence (AAAI'04) San Jose, CA,
July 2004.

[6] R. Bent and P. Van Hentenryck. Scenario Based PlannindgP&stially Dynamic Vehicle Routing
Problems with Stochastic Custome@perations Resear¢b2(6), 2004.

[7] R. Bent and P. Van Hentenryck. The Value of Consensus iln®rstochastic Scheduling. Rro-
ceedings of the 14th International Conference on AutomBtadning & Scheduling (ICAPS 20Q4)
Whistler, British Columbia, Canada, 2004.

[8] R.Bentand P. Van Hentenryck. Online Stochastic Optatian without Distributions . IfProceedings
of the 15th International Conference on Automated Plangirgcheduling (ICAPS 2005Monterey,
CA, 2005.

[9] A. Campbell and M. Savelsbergh. Decision Support for &oner Direct Grocery InitiativesReport
TLI-02-09, Georgia Institute of Technolgg’002.

[10] H. Chang, R. Givan, and E. Chong. On-line SchedulingSampling.Artificial Intelligence Planning
and Scheduling (AIPS’0ppages 62—71, 2000.

[11] B. Dean, M.X. Goemans, and J. Vondrak. Approximating $tochastic Knapsack Problem: The Ben-
efit of Adaptivity. InProceedings of the 45th Annual IEEE Symposium on Foundatdomputer
Sciencepages 208-217, Rome, Italy, 2004.

[12] M. PutermanMarkov Decision Processedohn Wiley & Sons, New York, 1994.

[13] P. Shaw. Using Constraint Programming and Local Selftethods to Solve Vehicle Routing Prob-
lems. InProceedings of Fourth International Conference on the Eiples and Practice of Constraint
Programming (CP’98)pages 417-431, Pisa, October 1998.

23

